澳门新葡亰app网站-娱乐场手机版官网 新葡亰器材 按仪器使用的光学系统还分为单光束、双光束、多波长光度计等,研究人员发现智能手机显微镜也能预测大约长度为约1

按仪器使用的光学系统还分为单光束、双光束、多波长光度计等,研究人员发现智能手机显微镜也能预测大约长度为约1

发布时间:15-01-28 11:04分类:技术文章 标签:X射线,探伤仪
射线探伤是利用射线可以穿透物质和在物质中有衰减的特性来发现其中缺陷的一种无损探伤方法。它可以检查金属和非金属材料及其制品的内部缺陷,如焊缝中的气孔、夹渣、未焊透等体积性缺陷。这种无损探伤方法有*特的优越性,即检验缺陷的直观性、准确性和可靠性,而且,得到的射线底片可用于缺陷的分析和作为质量凭证存档。但此法也存在着设备较复杂、成本较高的缺点,并需要对射线进行防护。
X射线的产生
用来产生X射线的装置是X射线管。它由阴极、阳极和真空玻璃(或金属陶瓷)外壳组成,其简单结构和工作原理如图1所示。阴极通以电流加热至白炽状态时,其阳极周围形成电子云,当在阳极与阴极间施加高压时,电子加速穿过真空空间,高速运动的电子束集中轰击阳极靶子的一个面积(几平方毫米左右、称实际焦点),电子被阻挡减速和吸收,其部分动能(约1%)转换为X射线,其余99%以上的能量变成热能。
图1X射线的产生示意图X射线的主要性质 •不可见,以光速直线传播。
•具有可穿透可见光不能穿透的物质如骨骼、金属等的能力,并且在物质中有衰减的特性。
•可以使物质电离,能使胶片感光,亦能使某些物质产生荧光。
γ射线的产生及性质
γ射线是由放射性物质(60Co、192Ir等)内部原子核的衰变过程产生的。
γ射线的性质与X射线相似,由于其波长比X射线短,因而射线能量高,具有更大的穿透力。例如,目前广泛使用的γ射线源60Co,它可以检查250mm厚的铜质工件、350mm厚的铝制工件和300mm厚的钢制工件。
射线与物质的相互作用
当射线穿透物质时,由于物质对射线有吸收和散射作用,从而引起射线能量的衰减。
射线在物质中的衰减是呈负指数规律变化的,以强度为I0的一束平行射线束穿过厚度为δ的物质为例,穿过物质后的射线强度为:
I=I0e-μδ 式中: I:射线透过厚度δ的物质的射线强度; I0:射线的初始强度;
e:自然对数的底; δ:透过物质的厚度; μ:衰减系数(㎝-1) 射线照相法
射线照相法是根据被检工件与其内部缺陷介质对射线能量衰减程度的不同,使得射线透过工件后的强度不同,使缺陷能在射线底片上显示出来的方法。如图2所示,从X射线机发射出来的X射线透过工件时,由于缺陷内部介质对射线的吸收能力和周围完好部位不一样,因而透过缺陷部位的射线强度不同于周围完好部位。把胶片放在工件适当位置,在感光胶片上,有缺陷部位和无缺陷部位将接受不同的射线曝光。再经过暗室处理后,得到底片。然后把底片放在观片灯上*可以明显观察到缺陷处和无缺陷处具有不同的黑度。评片人员据此*可以判断缺陷的情况。
图2射线照相法原理 射线荧光屏观察法
荧光屏观察法是将透过被检物体后的不同强度的射线,投射在涂有荧光物质的荧光屏上,激发出不同强度的荧光而得到物体内部的影象的方法。
此法所用设备主要由X射线发生器及其控制设备﹑荧光屏﹑观察和记录用的辅助设备﹑防护及传送工件的装置等几部分组成。检验时,把工件送至观察箱上,X射线管发出的射线透过被检工件,落到与之紧挨着的荧光屏上,显示的缺陷影象经平面镜反射后,通过平行于镜子的铅玻璃观察。
荧光屏观察法只能检查较薄且结构简单的工件,同时灵敏度较差,*高灵敏度在2%~3%,大量检验时,灵敏度*高只达4%~7%,对于微小裂纹是无法发现的。
射线实时成象检验
射线实时成象检验是工业射线探伤很有发展前途的一种新技术,与传统的射线照相法相比具有实时、高效、不用射线胶片、可记录和劳动条件好等显著优点。由于它采用X射线源,常称为X射线实时成象检验。国内外将它主要用于钢管、压力容器壳体焊缝检查;微电子器件和集成电路检查;食品包装夹杂物检查及海关安全检查等。
这种方法是利用小焦点或微焦点X射线源透照工件,利用一定的器件将X射线图象转换为可见光图象,再通过电视摄象机摄象后,将图象直接或通过计算机处理后再显示在电视监视屏上,以此来评定工件内部的质量。通常所说的工业X射线电视探伤,是指X光图象增强电视成象法,该法在国内外应用*为广泛,是当今射线实时成象检验的主流设备,其探伤灵敏度已高于2%,并可与射线照相法相媲美。该法探伤系统基本组成如图3所示。
图3 X光电增强—电视成法探伤系统
1:射线源;2、5:电动光阑;3:X射线束;4:工件;
6:图象增强器:7:耦合透镜组;8:电视摄象机;
9:控制器;10:图象处理器11:监视器;12:防护设施 射线计算机断层扫描技术
计算机断层扫描技术,简称CT(Computertomography)。它是根据物体横断面的一组投影数据,经计算机处理后,得到物体横断面的图象。其装置结构如图4所示。
图4射线工业CT系统组成框图 1:射线源;2:工件;3:检测器;4:数据采集部;
5:高速运算器;6:计算机CPU;7:控制器;
8:显示器;9:摄影单元;10:磁盘;11:防护设施;
12:机械控制单元;13:射线控制单元; 14:应用软件;15:图象处理器
射线源发出扇形束射线,被工件衰减后的射线强度投影数据经接收检测器(300个左右,能覆盖整个扇形扫描区域)采集,并进行从模拟量到数字量的高速A/D转换,形成数字信息。在一次扫描结束后,工作转动一个角度再进行下一次扫描,如此反复下去,即可采集到若干组数据。这些数字信息在高速运算器中进行修正﹑图象重建处理和暂存,在计算机CPU的统一管理及应用软件支持下,便可获得被检物体某一断面的真实图象,显示于监视器上。

发布时间:15-01-06 16:55分类:行业资讯 标签:便携式显微镜
近日,科学家开发了一种通过智能手机运行的便携式显微镜,可以估计样本DNA分子的长度,发现人类基因组拷贝数变异和其他疾病的遗传特性。这种显微镜,体积较小,重量不足190克,只需要三个AAA电池*可运行的,而成本只需400美元。
便携式显微镜这一研究成果公布在12月10日的ACSNano杂志上,附件重量为190克(以下),价格为400美元,需要3节AAA电池。从功能上说,研究人员能利用这一附件完成拷贝数变异,以及疾病其它遗传特征的分析,这将成为现场诊断领域的又一新星。
2015年的到来,不少新技术将与我们的日常生活结合更紧密,近期来自加州大学旧金山分校的一组研究人员*研发出了一种智能手机附件,能检测样品中DNA分子的长度。一些其他研究组也表示希望能利用智能手机显微镜,在缺乏必要基础设施的地区进行诊断治疗,这些地区也是*需要快速诊断传染性疾病的地方。
一般来说设备能分析的DNA分子长度为10000~48,000个碱基对大小,研究人员发现智能手机显微镜也能预测大约长度为约1,000个碱基对的片段大小,这与传统的台式荧光显微镜的出错率差不多。
研究人员在文章中证明了这一职能手机显微镜能分析荧光标记的DNA分子纯化溶液。首*将溶液放置在两个盖玻片之间,这样*能有效的将DNA拉升为直线,然后通过荧光显微镜附件内的蓝色激光照射在DNA上,智能手机*能完成一系列的拍照,并传送到远程服务器,计算片段长度。
电力生物工程师认为这一发现是个人电脑的一项革命性成果,“看看我们早期的计算机,它们十分笨重,也很昂贵。现在计算机变得轻便,可便携了……几乎每个人都能买得起。同样,显微镜观察也会朝着这一方向发展,我们研发了小型化微观和纳米分析工具,我们能令它们更加方便使用,更加强大。”
不仅是便携式显微镜的来临,也研发了不少便携式的设备,如华裔科学家戴聿昌教授开发出了一种便携式细胞计数器,能在几分钟内,用扎指头的方式*能获得结果。其中,便携式细胞计数器可以用于改善针对患有慢性疾病,比如白血病或其它癌症患者的门诊监测。而且也可通过组合使用,帮助偏远地区的远程医疗,甚至可以用于宇航员,宇航员长期暴露于辐射中,利用这一设备,当他们还在太空中的时候*进行检测。
附:爱仪器仪表网热卖仪器:日本OLYMPUS(奥林巴斯) OLS4100
3D测量激光显微镜 附:爱仪器仪表网热卖仪器:日本OLYMPUS(奥林巴斯)
SZ61体视显微镜

发布时间:14-12-17 17:18分类:技术文章 标签:紫外可见分光光度计
紫外可见分光光度计的机理:
尽管我们可以通过感知物质的颜色来预测总的吸收波长,但无法进行精确的波长分析,而且还可能存在着个体差异,另外人眼也无法观测到紫外线区。而在紫外可见分光光度计的系统中不存在个体的差异,原因是在分光光度计中使用人造光源来代替白光,光不是直接照射在物体上的,而是通过棱镜或衍射光栅将白光分成许多颜色,然后每种颜色(单色光)分别扫描物体来测量物质的吸收波长。
紫外可见分光光度计的基本构造:
分光光度计主要由光源、单色器(分光镜)、吸收池、检测器和显示器五大部分组成。
光源:在整个紫外光区或可见光区可以发射连续光谱,具有足够的辐射强度、较好的稳定性、较长的使用寿命,可见光区常用的光源是钨灯或碘钨灯,波长范围是350-1000nm。在紫外区常为氢灯或氘灯,发射的连续波长范围是180-360nm。
单色器:是将光源辐射的复合光分成单色光的光学装置。它是分光光度计的心脏部分。单色器一般由狭缝、色散元件及透镜系统组成。关键是色散元件,*常见的色散元件是棱镜和光栅。
•狭缝:将单色器的散射光切割成单色光。直接关系到仪器的分辨率。狭缝越小,光的单色性越好。分为入射狭缝和出射狭缝。
•棱镜:175-2700nm的光能被分开,色散随波长变化,波长长色散差,材质主要有水晶和溶凝石英。
•光栅:色散在整个波长范围内是统一的。1个衍射光栅能获得宽波长。另外,用常量狭缝宽度能获得常量光谱。因此具有波长范围宽,色散均匀,分辨性能好,使用方便的优点。
样品池:用于盛装试液的装置。吸收材料必须能够透过所测光谱范围的光。一般可见光区使用玻璃吸收池,紫外光区使用较贵的石英吸收池。测量时要挑选配对,因为吸收池材料的本身吸光特性以及吸收池的光程长度的精度等参数对分析结果都有影响。
检测器:用光电效应将透过吸收池的光信号变成可测的电信号,常用的有光电管、光电倍增管、光电二极管、光电摄像管等。它的作用是充当在紫外和可见区有灵敏性的光电管和放大器的作用。要求灵敏度高、响应时间短、噪声水平低、稳定性好等性质。
显示器:将检测到的信号输出显示出来,能直观的对结果进行观看分析。
分光光度计的分类:
一般有可见分光光度计,紫外分光光度计,可见紫外分光光度计,红外分光光度计等。按仪器使用的光学系统还分为单光束、双光束、多波长光度计等。
单光束:经单色器分光后的一束平行光,轮流通过参比溶液和样品溶液,以进行吸光度的测定。这种光度计的特点是简单便宜适于在给定波长处测量吸光度或透光度,一般不能作全波段光谱扫描,要求光源和检测器具有很高的稳定性。
双光束:经单色器分光后经反射镜分解为强度相等的两束光,一束通过参比池,一束通过样品池。光度计能自动比较两束光的强度,此比值即为试样的透射比,经对数变换将它转换成吸光度并作为波长的函数记录下来。一般具备快速全波段扫描。可消除光源不稳定、检测器灵敏度变化等因素的影响,特别适合于结构分析。此种仪器操作复杂价格较高。
双波长:由同一光源发出的光被分成两束,分别经过两个单色器,得到两束不同波长的单色光;通过折波器以一定的频率交替通过同一样品池,然后由检测器交替接收信号,*后由显示器显示出两个波长处的吸光度差值从而扣除了背景吸收的吸光度,达到更精确的测量效果。

标签:, , , , , , , , , , ,

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图